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Shape sorter?

• Simple children toy: put shapes in the correct holes
• Trivial for adults
• Yet children cannot fully solve until 2 years old (!)



Requirements

Recognize different shapes
Grasp objects and manipulate them
Understand the task and how to succeed
Mentally / physically rotate shapes into position
Move precisely to fit object into hole



How to do it?

• Classical robotic control pipeline approach

• Deep robotic end-to-end learning
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End-to-end learning



Using simulations as a proxy

• How many samples do we need to train a good behaviour?
– Real robot/car: stuck to real time speed
– MuJoCo simulator: up to 10000x real time

Finger tracking with CyberGlove synced 
with 3D reconstruction in MuJoCo

Real Jaco arm MuJoCo simulation

Udacity car simulator

[Todorov et al., 2012 & Behbahani et al., 2016]
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Deep Reinforcement Learning for control 
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Learning to reach

• Let’s first try to reach to a target and grasp it.
• Should be able to do this regardless of object location



Task and setup

• Reach red target
– Reward of 1 if target inside hand
– Random position each episode

40 x 40 x 40 cm

• Observation space:
– Two camera views

• Action space:
– Joint velocities

9 actuators, 5 possible velocities

View 1 View 2

Random agent



Agent architecture

• Inputs:
– 64 x 64 x 6 channels

• Vision
– ConvNet 2 layers
– ReLU activations

• LSTM (recurrent core)
– 128 units

• Policy
– Softmax per actuator (5 values)

• Value
– Linear layer to scalar

Vision

LSTM

ValuePolicy



For each timestep t, compute

Asynchronous Advantage Actor-Critic (A3C)

Agent acts for T timesteps (e.g., T=100)
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Plug g into a stochastic gradient descent optimiser (e.g. 
RMSprop)
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Multiple workers interact with their own environments 
and send gradient updates asynchronously

This helps with robustness and experience diversity
[Mnih et	al,	2016,	Rusu et	al.,	2016]



Results

• Successfully learns to reach to all target 
locations with sparse rewards
~6 million training steps

Domain randomisation
for robustness in transfer to real 

world 

After ~6 million training step
Each episode can last up to 100 steps

When learned ~7 steps

Camera side views



Place shape into its correct position

• Tries to place object in correct place but struggles to fit in



Deep RL end-to-end limitations

• Reward function definition is more of an art than science!
• Very sample inefficient
• Learning vision from scratch every time
• Policy does not transfer effectively to slightly different situations (e.g. move 

target by a few centimeters)
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A great recent overview of DRL methods à



Possible solutions

[e.g.	Levine	et	al,	2016	&	Mirowski et	al.,	2016]

Vision

LSTM

Joint	angles	&
velocities

ValuePolicyLearning with auxiliary information
Leverage extra information in simulation, forcing the 
agent to make sense of the geometry of what it sees.
This accelerate and stabilises reinforcement learning

Auxiliary	task:
Predict	auxiliary
Information:	
e.g.	depth

visual	input
Auxiliary	input

Leverage	information	available
only	within	simulation	and
learn	to	cope	without	them	



Possible solutions

Separating learning vision from the control problem
Avoid learning vision every time, focus on the task at hand
Requires a “general” vision module, useful on many possible tasks.

Observations controls

General-purpose 
pretrained vision module

….. ….. …..

Policy

Learn	robust	and	transferable	vision	module
e.g.	[Higgins	et	al.	2017	&	Finn	et	al.	2017]

End-to-end learning



Possible solutions

Learning from Demonstrations 

Imitation Learning:  Directly copy the expert (e.g. supervised learning)

Inverse RL: First infer what the expert is trying to do (learn its reward function r),
then learn your own optimal policy to achieve it using RL.

Training data

state

action

[e.g. Ho et al., 2016 & Wang et al., 2017]

Supervised 
learning

Policy 
reproducing 
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reward function



Possible solutions

Learning from Demonstrations 

Imitation Learning:  Directly copy the expert (e.g. supervised learning)

Inverse RL: First infer what the expert is trying to do (learn its reward function r),
then learn your own optimal policy to achieve it using RL.

Modelling	for	deformable	objects	is	
challenging!	

Current	simulators	fail	to	capture	full	
variability	of	deformable	objects	and	
even	small	differences	can	break	the	
robot!

World's	first	cat-petting	
robotic	arm!
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